Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
J Hazard Mater ; 469: 134036, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493623

RESUMO

1,2,5,6,9,10-Hexabromocyclododecanes (HBCDs) are a sort of persistent organic pollutants (POPs). This research investigated 12 microbial communities enriched from sediments of four mangroves in China to transform HBCDs. Six microbial communities gained high transformation rates (27.5-97.7%) after 12 generations of serial transfer. Bacteria were the main contributors to transform HBCDs rather than fungi. Analyses on the bacterial compositions and binning genomes showed that Alcanivorax (55.246-84.942%) harboring haloalkane dehalogenase genes dadAH and dadBH dominated the microbial communities with high transformation rates. Moreover, expressions of dadAH and dadBH in the microbial communities and Alcanivorax isolate could be induced by HBCDs. Further, it was found that purified proteins DadAH and DadBH showed high conversion rates on HBCDs in 36 h (91.9 ± 7.4 and 101.0 ± 1.8%, respectively). The engineered Escherichia coli BL21 strains harbored two genes could convert 5.7 ± 0.4 and 35.1 ± 0.1% HBCDs, respectively, lower than their cell-free crude extracts (61.2 ± 5.2 and 56.5 ± 8.7%, respectively). The diastereoisomer-specific transforming trend by both microbial communities and enzymes were γ- > α- > ß-HBCD, differed from α- > ß- > Î³-HBCD by the Alcanivorax isolate. The identified transformation products indicated that HBCDs were dehalogenated via HBr elimination (dehydrobromination), hydrolytic and reductive debromination pathways in the enriched cultures. Two enzymes converted HBCDs via hydrolytic debromination. The present research provided theoretical bases for the biotransformation of HBCDs by microbial community and the bioremediation of HBCDs contamination in the environment.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Microbiota , Estereoisomerismo , Hidrocarbonetos Bromados/metabolismo , Biotransformação , Bactérias/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 25, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157005

RESUMO

Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant; however, it is a persistent organic pollutant as well as affects the human thyroid hormones and causes cancer. However, the degradation of HBCD has received little attention from researchers. Due to its bioaccumulative and hazardous properties, an appropriate strategy for its remediation is required. In this study, we investigated the biodegradation of HBCD using Shewanella oneidensis MR-1 under optimized conditions. The Box-Behnken design (BBD) was implemented for the optimization of the physical degradation parameters of HBCD. S. oneidensis MR-1 showed the best degradation performance at a temperature of 30 °C, pH 7, and agitation speed of 115 rpm, with an HBCD concentration of 1125 µg/L in mineral salt medium (MSM). The strain tolerated up to 2000 µg/L HBCD. Gas chromatography-mass spectrometry analysis identified three intermediates, including 2-bromo dodecane, 2,7,10-trimethyldodecane, and 4-methyl-1-decene. The results provide an insightful understanding of the biodegradation of HBCD by S. oneidensis MR-1 under optimized conditions and could pave the way for further eco-friendly applications. KEY POINTS: • HBCD biodegradation by Shewanella oneidensis • Optimization of HBCD biodegradation by the Box-Behnken analysis • Identification of useful metabolites from HBCD degradation.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Shewanella , Humanos , Biodegradação Ambiental , Hidrocarbonetos Bromados/química , Hidrocarbonetos Bromados/metabolismo , Shewanella/metabolismo , Retardadores de Chama/metabolismo
3.
Environ Int ; 178: 108103, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494814

RESUMO

There is a growing evidence that methylation at the N6 position of adenine (6-mA), whose modulation occurs primarily during development, would be a reliable epigenetic marker in eukaryotic organisms. The present study raises the question as to whether early-life exposure to α-hexabromocyclododecane (α-HBCDD), a brominated flame retardant, may trigger modifications in 6-mA epigenetic hallmarks in the brain during the development which, in turn could affect the offspring behaviour in adulthood. Pregnant Wistar rats were split into two groups: control and α-HBCDD (66 ng/kg/per os, G0-PND14). At PND1, α-HBCDD levels were assessed in brain and liver by LC-MS/MS. At PND14, DNA was isolated from the offspring's cerebellum. DNA methylation was measured by 6-mA-specific immunoprecipitation and Illumina® sequencing (MEDIP-Seq). Locomotor activity was finally evaluated at PND120. In our early-life exposure model, we confirmed that α-HBCDD can cross the placental barrier and be detected in pups at birth. An obvious post-exposure phenotype with locomotor deficits was observed when the rats reached adulthood. This was accompanied by sex-specific over-methylation of genes involved in the insulin signaling pathway, MAPK signaling pathway as well as serotonergic and GABAergic synapses, potentially altering the normal process of neurodevelopment with consequent motor impairments crystalized at adulthood.


Assuntos
Retardadores de Chama , Hidrocarbonetos Bromados , Masculino , Animais , Ratos , Feminino , Gravidez , Cromatografia Líquida , Ratos Wistar , Placenta/metabolismo , Espectrometria de Massas em Tandem , Hidrocarbonetos Bromados/toxicidade , Hidrocarbonetos Bromados/metabolismo , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Cerebelo/metabolismo , Epigênese Genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-35346851

RESUMO

Hexabromocyclododecanes (HBCDs), widely used brominated flame retardants, easily accumulate in aquatic organisms such as Macrophthalmus japonicus crabs, which inhabit tidal flat sediments. To analyze the effects of HBCD exposure in chitin-formed exoskeleton, we investigated molecular responses of chitin-related genes as well as physical changes of the exoskeletal surface form as a new biological end-point on M. japonicus. The expression patterns of chitin biosynthesis-, modification-, and degradation-related genes in the gills and hepatopancreases of M. japonicus were also analyzed. Additionally, the survivability and exoskeleton surface profiles of M. japonicus crabs were evaluated. M. japonicus chitin synthase expression was significantly downregulated, whereas that of the chitinase transcript was significantly upregulated upon exposure to all HBCD concentrations on day 7. Contrastingly, the gene expression of chitin deacetylase 1 significantly increased upon exposure to all HBCD concentrations on day 1, and this increase was significantly elevated on day 4. The expression of chitin deacetylase 1 was dose-dependent. Additionally, decreased survival and exoskeleton surface profile changes were observed in M. japonicus crabs exposed to all HBCD concentrations. These results suggest that exposure to HBCD induces changes in the synthesis, modification, and degradation of chitin, a pivotal component of the cuticular exoskeleton, and may disrupt the exoskeletal surface structure in M. japonicus crabs.


Assuntos
Braquiúros , Retardadores de Chama , Hidrocarbonetos Bromados , Animais , Quitina/metabolismo , Expressão Gênica , Hidrocarbonetos Bromados/análise , Hidrocarbonetos Bromados/metabolismo , Hidrocarbonetos Bromados/farmacologia
5.
Food Chem ; 360: 130072, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34082376

RESUMO

Seventy-five contaminants including chlorinated/brominated/parent polycyclic aromatic hydrocarbons (Cl/Br/PAHs) were investigated in 29 edible aquatic species from the Indian Ocean near Sri Lanka and 10 species from the Pacific Ocean near Japan. Concentrations of total ClPAHs and BrPAHs in the samples were 2.6-57 and 0.30-9.5 ng/g-dry weight from the Indian Ocean, and 0.35-18 and 0.03-3.3 ng/g-dry weight from the Pacific Ocean, respectively. Comparing the profiles of Cl/BrPAHs among the samples, congeners of chlorinated and brominated pyrene were predominant components and enhanced the potential for biomagnification in the sample from the off-shore pelagic environment in the Indian Ocean. The incremental lifetime cancer risks estimated by intake of the targets in consuming aquatic organisms showed that approximately one-third of studied organisms exceeded the acceptable risk level for Sri Lankans.


Assuntos
Hidrocarbonetos Bromados/análise , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Animais , Monitoramento Ambiental , Peixes/metabolismo , Humanos , Hidrocarbonetos Bromados/metabolismo , Hidrocarbonetos Clorados/metabolismo , Japão , Medição de Risco , Sri Lanka
6.
Appl Environ Microbiol ; 87(17): e0082621, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34132585

RESUMO

Hexabromocyclododecanes (HBCDs) are widely used brominated flame retardants that cause antidiuretic hormone syndrome and even induce cancer. However, little information is available about the degradation mechanisms of HBCDs. In this study, genomic and proteomic analyses, reverse transcription-quantitative PCR, and gene knockout assays reveal that a cytochrome P450-encoding gene is responsible for HBCD catabolism in Pseudomonas aeruginosa HS9. The CO difference spectrum of the enzyme CYP168A1 was matched to P450 characteristics via UV visibility. We demonstrate that the reactions of debromination and hydrogenation are carried out one after another based on detection of the metabolites pentabromocyclododecanols (PBCDOHs), tetrabromocyclododecadiols (TBCDDOHs), and bromide ion. In the 18O isotope experiments, PBCD18OHs were only detected in the H218O group, proving that the added oxygen is derived from H2O, not from O2. This study elucidates the degradation mechanism of HBCDs by Pseudomonas. IMPORTANCE Hexabromocyclododecanes (HBCDs) are environmental pollutants that are widely used in industry. In this study, we identified and characterized a novel key dehalogenase, CYP168A1, that is responsible for HBCD degradation from Pseudomonas aeruginosa strain HS9. This study provides new insights into understanding biodegradation of HBCDs.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidrocarbonetos Bromados/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450/genética , Halogenação , Hidrogenação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
7.
EBioMedicine ; 62: 103134, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254027

RESUMO

BACKGROUND: Glioblastoma is the most aggressive primary brain tumour and has a very poor prognosis. Inhibition of c-Src activity in glioblastoma stem cells (GSCs, responsible for glioblastoma lethality) and primary glioblastoma cells by the peptide TAT-Cx43266-283 reduces tumorigenicity, and boosts survival in preclinical models. Because c-Src can modulate cell metabolism and several reports revealed poor clinical efficacy of various antitumoral drugs due to metabolic rewiring in cancer cells, here we explored the inhibition of advantageous GSC metabolic plasticity by the c-Src inhibitor TAT-Cx43266-283. METHODS: Metabolic impairment induced by the c-Src inhibitor TAT-Cx43266-283 in vitro was assessed by fluorometry, western blotting, immunofluorescence, qPCR, enzyme activity assays, electron microscopy, Seahorse analysis, time-lapse imaging, siRNA, and MTT assays. Protein expression in tumours from a xenograft orthotopic glioblastoma mouse model was evaluated by immunofluorescence. FINDINGS: TAT-Cx43266-283 decreased glucose uptake in human GSCs and reduced oxidative phosphorylation without a compensatory increase in glycolysis, with no effect on brain cell metabolism, including rat neurons, human and rat astrocytes, and human neural stem cells. TAT-Cx43266-283 impaired metabolic plasticity, reducing GSC growth and survival under different nutrient environments. Finally, GSCs intracranially implanted with TAT-Cx43266-283 showed decreased levels of important metabolic targets for cancer therapy, such as hexokinase-2 and GLUT-3. INTERPRETATION: The reduced ability of TAT-Cx43266-283-treated GSCs to survive in metabolically challenging settings, such as those with restricted nutrient availability or the ever-changing in vivo environment, allows us to conclude that the advantageous metabolic plasticity of GSCs can be therapeutically exploited through the specific and cell-selective inhibition of c-Src by TAT-Cx43266-283. FUNDING: Spanish Ministerio de Economía y Competitividad (FEDER BFU2015-70040-R and FEDER RTI2018-099873-B-I00), Fundación Ramón Areces. Fellowships from the Junta de Castilla y León, European Social Fund, Ministerio de Ciencia and Asociación Española Contra el Cáncer (AECC).


Assuntos
Metabolismo Energético/efeitos dos fármacos , Glioma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Quinases da Família src/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Espaço Extracelular , Fluorocarbonos/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Glucose/metabolismo , Glicólise , Humanos , Hidrocarbonetos Bromados/metabolismo , Concentração de Íons de Hidrogênio , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Ratos
8.
Ecotoxicol Environ Saf ; 192: 110246, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32028153

RESUMO

The thermal processes of cement kilns are sources of polybrominated dibenzofurans and dioxins (PBDD/Fs); however, when co-processing decabromodiphenyl ether (BDE-209) soil in cement kilns, very few reports have investigated the mechanism of PBDD/Fs formation from BDE-209. Therefore, the pathways and factors that influence the formation of PBDD/Fs were investigated using Box-Behnken design (BBD) of the response surface methodology (RSM) at lab-scale. The PBDEs, HBr/Br2 and PBDD/Fs emissions in flue gas from the simulated thermal process were analyzed using gas chromatography/mass spectroscopy (GC/MS), high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS), and ion chromatography (IC). Density functional theory (DFT) was also used to further discuss the formation of PBDD/Fs. The major products of BDE-209 thermal decomposition in flue gas were 97.1% HBr/Br2 (a.v. 26.6%/70.6%) > 2.7% PBDEs >0.2% PBDD/Fs. Formation of precursors were the main pathways for PBDD/Fs, and those precursors were dominated by higher-brominated PBDEs (heptã deca-BDEs); debromination of BDE-209 was also a crucial pathway for the formation of PBDD/Fs throughout the thermal process. Interestingly, it was easier to form HpBDD/Fs from OBDD/Fs than from PBDEs. The O2 percentage and interaction factors of O2 percentage, temperature, and CaCO3 percentage have the largest influence on PBDD/Fs emissions and formation.


Assuntos
Dibenzofuranos/metabolismo , Dioxinas/metabolismo , Éteres Difenil Halogenados/metabolismo , Hidrocarbonetos Bromados/metabolismo , Poluentes do Solo/metabolismo , Materiais de Construção , Monitoramento Ambiental
9.
Bioprocess Biosyst Eng ; 43(5): 851-861, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31919604

RESUMO

Conductive magnetite (Fe3O4) has been applied into some anaerobic bioprocesses to accelerate direct interspecies electron transfer (DIET), however, Fe3O4 is usually dissolved by iron-reducing bacteria under anaerobic conditions, resulting in the loss of magnetite. Therefore, submicron magnetite particles were added to the sequencing batch reactor (SBR) to build a Fe3O4/SBR system, which could alleviate magnetite dissolution and simultaneously remove tribromophenol (TBP) effectively. The average removal efficiencies of chemical oxygen demand (COD) and TBP in Fe3O4/SBR system were 81% and 91%, respectively, which were 51% and 18% higher than those of the control group without Fe3O4 (SBR system). The enhanced TBP biodegradation was likely related to potential DIET, which was supported by the scanning electron microscopy (SEM) analysis, the increase of dehydrogenase and heme c (fivefold and 1.7-fold), and the enrichment of iron-redoxing bacteria (Geobacter and Thiobacillus). Furthermore, magnetite mainly remained intact in structure as indicated by X-ray diffraction (XRD), which might be ascribed to in situ iron redox cycle and magnetite biosynthesis via Magnetospirillum. Notably, the content of hydrogen peroxide (H2O2) and hydroxyl radical (⋅OH) in Fe3O4/SBR system was 4-5 times higher than that of SBR system. These findings could provide insights into the development of cost-effective strategy for the removal of refractory organic pollutants.


Assuntos
Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Óxido Ferroso-Férrico/química , Geobacter/crescimento & desenvolvimento , Hidrocarbonetos Bromados/metabolismo , Fenol/metabolismo , Thiobacillus/crescimento & desenvolvimento , Hidrocarbonetos Bromados/química , Fenol/química
10.
Chemosphere ; 244: 125524, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31812044

RESUMO

Two currently used brominated flame retardants (BFRs), α, ß, γ-hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA), were measured in 111 breast milk samples from 37 Beijing mothers. Each mother provided one milk sample per month for 3 months. HBCDD was detected in almost all samples, and the median level reached 5.67 ng g-1 lipid weight (lw). α- HBCDD was the most abundant isomer (median: 4.23 ng g-1 lw), followed by γ- and ß-HBCDD. For TBBPA, a relatively lower detecting frequency (64%) and contamination level (median: 1.57 ng g-1 lw) were obtained. A comparison to our previous study revealed that the occurrence of TBBPA and HBCDD in Beijing human milk significantly rose from 2011 to 2014, whereas another commonly used class of BFRs, polybrominated diphenyl ethers (PBDEs), showed significantly decreased during this period. However, a comparison among currently used BFRs showed that levels of some BFRs, such as HBCDD, surpassed those of PBDEs, which indicated that PBDEs were no longer the primarily used BFR in China. However, no significant temporal trends for BFR levels were observed over the 3 months of lactation. Daily intakes of TBBPA and HBCDD were calculated for nursing infants and the median TBBPA and HBCDD intakes via breastfeeding were 6.62 and 26.4 ng kg-1 bw day-1, respectively. These values were several times higher than those for adults via food consumption. However, risk assessment using the margin of exposure approach indicated that intakes of TBBPA and HBCDD via breastfeeding can scarcely cause significant health risks to infants.


Assuntos
Exposição Dietética/estatística & dados numéricos , Poluentes Ambientais/metabolismo , Hidrocarbonetos Bromados/metabolismo , Exposição Materna/estatística & dados numéricos , Leite Humano/metabolismo , Bifenil Polibromatos/metabolismo , Adulto , Pequim , Peso Corporal , China , Feminino , Retardadores de Chama/análise , Retardadores de Chama/metabolismo , Éteres Difenil Halogenados/análise , Humanos , Lactente , Isomerismo , Leite Humano/química , Mães , Medição de Risco
11.
J Hazard Mater ; 389: 121889, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31859167

RESUMO

Exposure to 1-bromopropane (1-BP) has been reported to cause glutathione depletion and increase the level of oxidative damage, which play critical roles in diabetes. However, the possible associations or mechanisms of the exposure of 1-BP with the plasma glucose level and the risk of diabetes are unclear. In this study, we explored the relationships of the urinary 1-BP metabolite N-Acetyl-S-(n-propyl)-l-cysteine (BPMA) with fasting plasma glucose (FPG) levels and the risk of diabetes, and the mediating role of oxidative damage in the above relationships in 3678 urban adults from the Wuhan-Zhuhai cohort in China. We found a significant dose-response relationship between BPMA and FPG levels with a ß of 0.09 (95 % CI: 0.04, 0.14). In addition, mediating effect of urinary BPMA on FPG levels was observed depending on elevated 8-isoprostane level, with a median proportion of 32.06 %. Furthermore, we observed a significant association between urinary BPMA and the risk of diabetes, with an adjusted odds ratio of 1.34 (1.18, 1.52) for all participants. These results indicated that urinary 1-BP metabolites were positively associated with FPG levels and the risk of diabetes among urban adults in this cross-sectional study. Lipid peroxidation partially mediated the association between urinary 1-BP metabolites and FPG levels.


Assuntos
Glicemia/análise , Diabetes Mellitus/sangue , Diabetes Mellitus/urina , Exposição Ambiental , Peroxidação de Lipídeos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Cidades/epidemiologia , Estudos Transversais , Diabetes Mellitus/epidemiologia , Feminino , Humanos , Hidrocarbonetos Bromados/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
12.
Ecotoxicol Environ Saf ; 185: 109690, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31563749

RESUMO

Hexabromocyclododecanes (HBCDs) are the third most highly produced brominated flame retardants (BFRs) all over the world. Based on the current research status of HBCDs, zebrafish were exposed to three dietary concentrations of HBCDs (0, 10, 100, 400 ng/g) for 56 days, and followed by clean food for 28 days. In order to investigate the enrichment and purification of HBCDs in zebrafish, HBCD enantiomers in zebrafish were determined using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). To investigate the effects of long-term exposure of HBCDs on thyroid dysfunction and oxidative stress in zebrafish, the concentrations of thyroid hormone (T3, T4, FT3 and FT4) and the activities of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were measured. RT-PCR was used to reveal the molecular mechanism of HBCDs' influence on thyroid hormone in zebrafish. The result of UPLC-MS/MS showed that there were three main reasons for the existence of α-HBCD as the major isomer in the organism. HBCDs had significant inhibitory effect on T3 and T4 in liver of adult zebrafish after 56 days' exposure. Compared with the control group, the ratio of T3 and T4was significantly higher in the medium and high concentration group. The content of FT3 and FT4 in the liver tissue of zebrafish increased first and then decreased with the increase of exposure concentration. With the increase of exposure concentration, the content of MDA in zebrafish liver decreased firstly and then increased. The activity of SOD and CAT in zebrafish liver showed the opposite trend with MDA. And the concentration of GSH in liver decreased gradually, which showed a significant dose-effect relationship. HBCDs exposure has an inhibitory effect on thyroid hormone receptor gene (TRß) and adrenocorticotropin-releasing hormone gene (Crh) in zebrafish.


Assuntos
Retardadores de Chama/toxicidade , Hidrocarbonetos Bromados/toxicidade , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Peixe-Zebra/metabolismo , Ração Animal , Animais , Cromatografia Líquida , Exposição Dietética/análise , Relação Dose-Resposta a Droga , Retardadores de Chama/metabolismo , Hidrocarbonetos Bromados/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estereoisomerismo , Espectrometria de Massas em Tandem , Glândula Tireoide/metabolismo
13.
J Hazard Mater ; 380: 120833, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31446271

RESUMO

Hexabromocyclododecanes (HBCDs) are the second-most widely used brominated flame retardants. They cause inappropriate antidiuretic hormone syndrome and can induce cancer. However, little information is available about bacterial degradation of HBCDs. In this study, HBCDs (α-, ß- and γ-HBCD) degrading strain Pseudomonas aeruginosa HS9 was isolated, identified, and characterized. The strain HS9 could remove 69% (± 0.05%) of 1.7 mg/L HBCDs in 14 days. Based on identification of metabolites, this bacterium could oxidize HBCDs by two pathways. In the first, HBCDs are sequentially debromized to tetrabromocyclododecene, dibromocyclododecadiene, and then debromized once more to cis, trans, trans-1, 5, 9-cyclododecatriene (CDT). After that, CDT is then oxidized to 1,2-epoxy-5,9-cyclododecadiene. The second identified pathway is a simultaneous debrominating and hydroxylating process based on the detection of 2,5,6,9,10-pentabromocyclododecanols, which were newly identified. The strain's effects on plant-maize growth were tested and bioremediation evaluation trials were performed. The addition of strain HS9 could decrease HBCDs of 4.08 mg/g (87.6% removed) and 0.1 mg/g (25% removed) in soil and plants, respectively. Microbial diversity analysis shows that the addition of strain HS9 can promote the abundance of plant-beneficial bacteria, such as Methylobacillus, Nitrosomonas, Plancoccus, Bacillus, and Rhodococcus. The results provide insights for the bioremediation of HBCDs-contaminated soils.


Assuntos
Biodegradação Ambiental , Retardadores de Chama/metabolismo , Hidrocarbonetos Bromados/metabolismo , Pseudomonas/metabolismo , Poluentes do Solo/metabolismo , Zea mays/metabolismo
14.
Sci Total Environ ; 692: 249-258, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31349166

RESUMO

We discovered one purple photosynthetic bacterium, Rhodopseudomonas palustris YSC3, which has a specific ability to degrade 1, 2, 5, 6, 9, 10-hexabromocyclododecane (HBCD). The whole transcriptome of R. palustris YSC3 was analyzed using the RNA-based sequencing technology in illumina and was compared as well as discussed through Multi-Omics onLine Analysis System (MOLAS, http://molas.iis.sinica.edu.tw/NTUIOBYSC3/) platform we built. By using genome based mapping approach, we can align the trimmed reads on the genome of R. palustris and estimate the expression profiling for each transcript. A total of 341 differentially expressed genes (DEGs) in HBCD-treated R. palustris (RPH) versus control R. palustris (RPC) was identified by 2-fold changes, among which 305 genes were up-regulated and 36 genes were down-regulated. The regulated genes were mapped to the database of Gene Ontology (GO) and Genes and Genomes Encyclopedia of Kyoto (KEGG), resulting in 78 pathways being identified. Among those DEGs which annotated to important functions in several metabolic pathways, including those involved in two-component system (13.6%), ribosome assembly (10.7%), glyoxylate and dicarboxylate metabolism (5.3%), fatty acid degradation (4.7%), drug metabolism-cytochrome P450 (2.3%), and chlorocyclohexane and chlorobenzene degradation (3.0%) were differentially expressed in RPH and RPC samples. We also identified one transcript annotated as dehalogenase and other genes involved in the HBCD biotransformation in R. palustris. Furthermore, the putative HBCD biotransformation mechanism in R. palustris was proposed.


Assuntos
Hidrocarbonetos Bromados/metabolismo , Rodopseudomonas/metabolismo , Transcriptoma , Poluentes Químicos da Água/metabolismo , Biotransformação , Sequenciamento de Nucleotídeos em Larga Escala
15.
Environ Int ; 129: 239-246, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146158

RESUMO

Brominated flame retardants (BFRs) such as tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) are of ecological concern due to their ubiquitous presence and adverse effects. There is a paucity of data on environmental fate of such compounds in mangrove wetlands, which are unique ecosystems in coastal intertidal areas and act as natural sinks for many pollutants. In this study, mangrove plants and sediments were collected from an urban nature reserve in South China to investigate bioaccumulation and translocation of TBBPA and HBCDs. The mean (range) concentrations of TBBPA and ΣHBCD in roots, stems and leaves were 67 (

Assuntos
Hidrocarbonetos Bromados/metabolismo , Bifenil Polibromatos/metabolismo , China , Retardadores de Chama/análise , Hidrocarbonetos Bromados/análise , Plantas/metabolismo , Bifenil Polibromatos/análise
16.
Microbes Environ ; 34(2): 215-218, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-30773515

RESUMO

The responses of bacterial communities to halocarbon were examined using a 28-d incubation of bromoform- and methanol-enriched subarctic surface seawater. Significant increases were observed in dibromomethane concentrations and bacterial 16S rRNA gene copy numbers in the treated substrates incubated for 13 d. The accumulated bacterial community was investigated by denaturing gradient gel electrophoresis and amplicon analyses. The dominant genotypes corresponded to the genera Roseobacter, Lentibacter, and Amylibacter; the family Flavobacteriaceae; and the phylum Planctomycetes, including methylotrophs of the genus Methylophaga and the family Methylophilaceae. Therefore, various phylotypes responded along with the dehalogenation processes in subarctic seawater.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos Bromados/metabolismo , Metanol/metabolismo , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/química , Análise de Sequência de DNA , Trialometanos/metabolismo
18.
Sci Total Environ ; 656: 364-372, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30513427

RESUMO

In vitro biotransformation of HBCDs by maize cytochrome P450 (CYP) enzymes, responses of CYPs to HBCDs at protein and transcription levels, and in silico simulation of interactions between CYPs and HBCDs were investigated in order to elucidate the roles of CYPs in the metabolism of HBCDs in maize. The results showed that degradation reactions of HBCDs by maize microsomal CYPs followed the first-order kinetics and were stereo-selective, with the metabolic rates following the order (-)γ- > (+)γ- > (+)α- > (-)α-HBCD. The hydroxylated metabolites OH-HBCDs, OH-PBCDs and OH-TBCDs were detected. (+)/(-)-α-HBCDs significantly decreased maize CYP protein content and inhibited CYP enzyme activity, whereas (+)/(-)-γ-HBCDs had obvious effects on the induction of CYPs. HBCDs selectively mediated the gene expression of maize CYPs, including the isoforms of CYP71C3v2, CYP71C1, CYP81A1, CYP92A1 and CYP97A16. Molecular docking results suggested that HBCDs could bind with these five CYPs, with binding affinity following the order CYP71C3v2 < CYP81A1 < CYP97A16 < CYP92A1 < CYP71C1. The shortest distances between the Br-unsubstituted C atom of HBCD isomers and the iron atom of heme in CYPs were 4.18-11.7 Å, with only the distances for CYP71C3v2 being shorter than 6 Š(4.61-5.38 Å). These results suggested that CYP71C3v2 was an efficient catalyst for degradation of HBCDs. For (+)α- and (-)γ-HBCDs, their binding affinities to CYPs were lower and the distances to the iron atom of heme in CYPs were shorter than their corresponding antipodes, consistent with the in vitro experimental results showing that they had shorter half-lives and were more easily hydroxylated. This study provides solid evidence for the roles of maize CYPs in the metabolism of HBCDs, and gives insight into the molecular mechanisms of the enantio-selective metabolism of HBCDs by plant CYPs.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Poluentes Ambientais/metabolismo , Hidrocarbonetos Bromados/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Biotransformação , Simulação por Computador , Cinética , Simulação de Acoplamento Molecular , Zea mays/enzimologia
19.
Chem Res Toxicol ; 31(10): 1086-1091, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30169019

RESUMO

Glutathione S-transferase (GST) is a family of important drug-metabolizing enzymes, conjugating endogenous and exogenous compounds. Genetic polymorphisms result in the inter-individual variability of GST activity in humans. Especially, human GSTT1 and GSTT2 null alleles are associated with toxicity and various cancers derived from chemicals. Cynomolgus macaque, a nonhuman primate species widely used in drug metabolism studies, has molecular and enzymatic similarities of GSTs to the human orthologs; however, genetic polymorphisms have not been investigated in this species. In this study, resequencing of GSTT1 and GSTT2 in 64 cynomolgus and 32 rhesus macaques found 15 nonsynonymous variants and 1 nonsense variant for GSTT1 and 15 nonsynonymous variants for GSTT2. Some of these GSTT variants were distributed differently in Indochinese and Indonesian cynomolgus macaques and rhesus macaques. For analysis of functional relevance of the GSTT variants, 1-iodohexane and dibromomethane were determined to be suitable substrates for cynomolgus GSTT1 and GSTT2. However, the conjugation activities were roughly correlated with GSTT protein levels immunochemically quantified in cynomolgus liver samples with no statistical significances, implying the contributions of the GST genetic variants. Among the GSTT1 variants identified, the animals carrying R76C and D125G mutations showed lower conjugation activities toward dibromomethane than those of the wild-type in liver cytosolic fractions. Moreover, the recombinant R76C/D125G and D125G GSTT variant proteins showed significantly lower 1-iodohexane or dibromomethane conjugation activities than those of the wild-type protein. Therefore, inter-animal variability of GSTT-dependent drug metabolism is at least partly accounted for by GSTT1 and possibly GSTT2 variants in cynomolgus and rhesus macaques.


Assuntos
Glutationa Transferase/genética , Macaca fascicularis/genética , Animais , Códon sem Sentido , Glutationa Transferase/metabolismo , Hidrocarbonetos Bromados/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Fígado/enzimologia , Macaca mulatta/genética , Polimorfismo Genético , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
20.
J Hazard Mater ; 355: 82-88, 2018 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775881

RESUMO

At a sewage treatment plant, 27 polybrominated diphenyl ethers, 17 methoxylated brominated diphenyl ethers, nine hydroxylated brominated diphenyl ethers, three hexabromocyclododecane diastereomers, and tetrabromobisphenol A were monitored at five major treatment stages (the influent, primary settlement stage, biological reaction stage, secondary settlement stage, and the UV irradiation disinfection stage). Hexabromocyclododecanes were the dominant chemicals, contributing 40% of the total concentrations of the chemicals in the dissolved phase of the sewage. Brominated flame retardant mass flow in the wastewater was lower after than before the biological reaction stage, and more than 70% of the inflowing mass load was removed from the mainstream wastewater by becoming associated with the sludge. More than half of mass loads of parent brominated flame retardants in the wastewater were removed after the treatments, but up to 10% of the initial mass loads remained in the final effluent and was expected to be released into the aquatic environment. The hydroxylated and methoxylated brominated diphenyl ether concentrations decreased by <25%, much less than the polybrominated diphenyl ethers. It is possible that hydroxylated and methoxylated polybrominated diphenyl ethers formed through the transformation of polybrominated diphenyl ethers during the biological reactions of treatment processes.


Assuntos
Retardadores de Chama/metabolismo , Retardadores de Chama/efeitos da radiação , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/efeitos da radiação , Reatores Biológicos , Éteres Difenil Halogenados/metabolismo , Éteres Difenil Halogenados/efeitos da radiação , Hidrocarbonetos Bromados/metabolismo , Hidrocarbonetos Bromados/efeitos da radiação , Bifenil Polibromatos/metabolismo , Bifenil Polibromatos/efeitos da radiação , Raios Ultravioleta , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...